ENVIRONMENTAL MANAGEMENT PROFESSIONALS, INC.

94 Sawyer Lane Marshfield, MA 02050 781-834-3822 • Fax 781-834-7110

June 7, 2006

George Papadopoulos US Environmental Protection Agency RGP-NOC Processing Municipal Assistance Unit (CMU) 1 Congress Street, Suite 1100 Boston, MA 02114-2023

Re:

Notice of Intent (NOI) for the Remediation General Permit (RGP)

Boston Market Terminal

34 Market Street Everett, MA 02149

Dear Mr. Papadopoulos,

On Behalf of our client the D'Allessandro Corporation and New England Produce Center, Environmental Management professionals, Inc, (EMP) is submitting this Notice of Intent (NOI) for the above identified site. The Remediation General Permit (RGP) is required to treat and discharge groundwater from the dewatering activities associated with a sewer rehabilitation project at the Boston Market Terminal. The groundwater from the excavation activities will be collected in frac tank to allow separation of sediments. The water will then be passed through a sand filter and bag filter to further reduce additional sediments before final polishing by activated granular carbon. The treated effluent water will then be directed to a tidal ditch which discharges into the Island End River, a tributary to the Mystic River. In accordance with NOI, compliance samples shall be collected from the influent and treated effluent water to ensure proper system operation.

If you should have any questions concerning information provided, please do not hesitate to contact me at 781-834-3822,

Sincerely,

Kevin P. Connors

Project Manager

cc: Andrew M. Andinolfi, GEI Consultants, Inc

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General site information. Please provide the following information about the site:

a) Name of facility/site: BOSTON MARKET TER	MINAL	Facility/site address	Facility/site address:				
Location of facility/site: longitude: latitude: 42deg. 23 min. 53.25sec. N 71deg. 03min. 01.63sec. W b) Name of facility/site owner: NEW ENGLAND P Email address of owner:	Facility SIC code(s): PRODUCE MARKET	Street: 34 MARKET Town: EVERETT State: MA 2	T STREET Zip: 02149 County: SUFFOLK				
Telephone no.of facility/site owner: 617-889-2700							
Fax no. of facility/site owner: 617-889-5309		Owner is (check one): 1. Federal 2. State/Tribal					
Address of owner (if different from site):		3. Private X 4. ot	other, if so, describe:				
Street: 90 PRODUCE CENTER							
Town: CHELSEA	State: MA	Zip: 02150	SUFFOLK				
c) Legal name of operator: D'ALLESSANDRO CORPORATION	Operator tele	ephone no: 508-559-640	000				
	Operator fax	no.: 508-559-6432	Operator email: tjshea@dallessandro.com				
Operator contact name and title:	T.J Shea, Project Supervisor						

Address of operator (if different from owner):	Street: 41 LEDI	N DRIVE						
Town: AVON	State: MA	Zip: 02322	County: NORFOLK					
d) Check "yes" or "no" for the following:								
1. Has a prior NPDES permit exclusion been granted for the discharge?	/esNo _X_	_, if "yes," number:						
2. Has a prior NPDES application (Form I & 2C) ever been filed for the discharge? Yes NoX, if "yes," date and tracking #:								
3. Is the discharge a "new discharge" as defined By 40 CFR 122.2? Yes_	XNo							
4. For sites in Massachusetts, is the discharge covered under the MA Co	ntingency Plan (N	ACP) and exempt from state perm	nitting? YesNo_X					
e) Is site/facility subject to any State permitting or other action which is of the generation of discharge? Yes X No	ausing	f) Is the site/facility covered by	any other EPA permit, including:					
If "yes," please list- 1. site identification # assigned by the state of NH or MA: RTN 3-13158 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number DEP NERO Wilmington, MA 978-694-3200	я:	 phase I or II construction storif Y, number: individual NPDES permit? Y 	eral permit? Y N_X_if Y, number: rm water general permit? YN_X_, Y N if Y, number: ed permit? YN, if Y, number:					

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as needed) including:

a) Describe the discharge act	ivities for which the owner/applicant is so	eeking coverage: CONSTRUCTION DEWATERING FOR SANITARY SEWER REPAIR AND INSTALLATION
b) Provide the following	1) Number of discharge points: 1	2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft3/s)? Max. Flow 0.11
information about each		Average flow 0.055 Is maximum flow a design value? Y X N
discharge:		
		For average flow, include the units and appropriate notation if this value is a design value or estimate if not
		available.
3) Latitude and longitude of e	each discharge within 100 feet: pt.1: lo	ng. 71 deg. 03 min. 0.62 sec. W lat 43 deg. 23 min. 55.08 sec. N.;
	-	
pt.2: long lat; pt.3: long	lat; pt.4:long lat pt.5: long lat;	pt.6:long lat; pt.7: long lat; pt.8:long lat; etc.
4) If hydrostatic testing, total volume of the discharge (gals):		5) Is the discharge intermittent or seasonal?
		Is discharge
		ongoing Yes_X_No
c) Expected dates of discharg	e (mm/dd/yy): start 07/05/06 end 08/31/0	06
d) Please attach a line drawin	g or flow schematic showing water flow	through the facility including:
1		
1. sources of intake wa	ater, 2. contributing flow from the operat	ion, 3. treatment units, and 4. discharge points and receiving waters(s).

3. Contaminant information. In order to complete this section, the applicant will need to take a minimum of one sample of the untreated water and have it analyzed for all of the parameters listed in Appendix III. Historical data, (i.e., data taken no more than 2 years prior to the effective date of the permit) may be used if obtained pursuant to: i. Massachusetts' regulations 310 CMR 40.0000, the Massachusetts Contingency Plan ("Chapter 21E"); ii. New Hampshire's Title 50 RSA 485-A: Water Pollution and Waste Disposal or Title 50 RSA 485-C: Groundwater Protection Act; or iii. an EPA permit exclusion letter issued pursuant to 40 CFR 122.3, provided the data was analyzed with test methods that meet the requirements of this permit. Otherwise, a new sample shall be taken and analyzed.

a) Based on the analysis of the sample(s) of the untreated influent, the applicant must check the box of the sub-categories that the potential discharge falls within.

Gasoline Only	VOC Only	Primarily Metals	Urban Fill Sites	Contaminated Sumps	Mixed Contaminants	Aquifer Testing
Fuel Oils (and	VOC with Other	Petroleum with Other	Listed Contaminated	Contaminated	Hydrostatic Testing of	Well Development or
Other Oils) only	Contaminants	Contaminants	Sites X.	Dredge Condensates	Pipelines/Tanks	Rehabilitation

b) Based on the analysis of the untreated influent, the applicant must indicate whether each listed chemical is **believed present or believed absent** in the potential discharge. Attach additional sheets as needed.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample	Analytical Method	Minimum Level (ML) of	Maximum daily	nily value Avg. dai		aily value	
	(I min- imum) (e.g., grab) Used Test Method (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)					
1. Total Suspended Solids		X	1	Grab (G)	160.2		3200000				
2. Total Residual Chlorine	X		1	G	330.1						
3. Total Petroleum Hydrocarbons		X	1	G	1664A		89000				
4. Cyanide		X	1	G	335.2		107				
5. Benzene	. [X	1	G	624		540				
6. Toluene		X	1	G	624		50				
7. Ethylbenzene	1	X	1	G	624		6.9	` i			
8. (m,p,o) Xylenes	i	X	1	G	624		50				
9. Total BTEX ⁴							647				

⁴ BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method	Minimum Level (ML) of	Maximum daily v	um daily value Avg. daily value		
			(1 min- imum)	grab)	Used (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
10. Ethylene Dibromide (1,2- Dibromo-methane)	X		1	G	624					
11. Methyl-tert-Butyl Ether (MtBE)	X		1	G	624			-		
12. tert-Butyl Alcohol (TBA)	Х		1	G	624					
13. tert-Amyl Methyl Ether (TAME)	Х		1	G	624					
14. Naphthalene		X	1	G	8270		380			
15. Carbon Tetra- chloride	X		1	G	624					
16. 1,4 Dichlorobenzene	X		1	G	624					
17. 1,2 Dichlorobenzene	X		1	G	624					
18. 1,3 Dichlorobenzene	X		1	G	624					
19. 1,1 Dichloroethane	X		1	G	624					
20. 1,2 Dichloroethane	X		1	G	624					
21. 1,1 Dichloroethylene	X		1	G	624					
22. cis-1,2 Dichloro- ethylene	Х		1	G	624					
23. Dichloromethane (Methylene Chloride)	х		1	G	624					
24. Tetrachloroethylene	X		1	G	624					

PARAMETER	Believe Absent	Believe Present	# of Samples	Typeof Sample (e.g.,	Analytical Method Used	Minimum Level (ML) of Test	Maximum daily v	alue	Avg. daily Value	
			(I min- imum)	grab)	(method #)	Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
25. 1,1,1 Trichloroethane	X		1	G	624					
26. 1,1,2 Trichloroethane	X		1	G	624					
27. Trichloroethylene	X		1	G	624					
28. Vinyl Chloride	X		1	G	624					
29. Acetone	X		1	G	624		T			
30. 1,4 Dioxane	X		1	G	624					
31. Total Phenois		X	1	G	420.1		430			
32. Pentachlorophenol	X		1	G	8270	·				
33. Total Phthalates ⁵	X		1	G	8270					,
(Phthalate esthers) 34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	Х		1	G	8270					
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		X	1	G	8270		144			
a. Benzo(a) Anthracene		X	1	G	8270		35			
b. Benzo(a) Pyrene		X	1	G	8270		24			
c. Benzo(b)Fluoranthene		X	1	G	8270		24			
d. Benzo(k) Fluoranthene		X	1	G	8270		21			
e. Chrysene		X	1	G	8270		27			

⁵ The sum of individual phthalate compounds.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method Used	Minimum Level (ML) of	Maximum daily v	/alue	Average daily va	lue
			(I min- imum)	grab)	(method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
f. Dibenzo(a,h)		X	1	G	8270		<4.8			
anthracene									<u> </u>	
g. Indeno(1,2,3-cd) Pyrene		X	1	G	8270		13			į
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		Х	1	G	8270		1001			
h. Acenaphthene		X	1	G	8270		73			
i. Acenaphthylene		X	1	G	8270		18			
j. Anthracene		X	1	G	8270		39			
k. Benzo(ghi) Perylene		X	1	G	8270		39			
I. Fluoranthene		X	1	G	8270		130			
m. Fluorene		X	1	G	8270		91			
n. Naphthalene-		X	1	G	8270		380			
o. Phenanthrene		X	1	G	8270		140			
p. Pyrene		X	1	G	8270		91			
37. Total Polychlorinated Biphenyls (PCBs)	X		1	G	608	·				
38. Antimony		X	1	G	6020		2.1			
39. Arsenic		X	1	G	200.7		42			
40. Cadmium		X	1	G	6020		4.5			
41. Chromium III		Х	1	G	200.7		100			
42. Chromium VI	X	X	1	G	7.3					

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method	Minimum Level (ML) of	Maximum daily	value	Avg. daily value	
	(I min- grab) Used Test Method imum) (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)				
43. Copper		X	1	G	200.7		270			
44. Lead		X	1	G	6020		561.3			
45. Mercury		X	1	G	245.2		6.6			
46. Nickel		X	1	G	200.7		78			
47. Selenium	X		1	Ğ	200.7					
48. Silver	X	1	1	G	6020					
49. Zinc		X	1	G	200.7		1000			
50. Iron		X	1	G	200.7		83000			
Other (describe):				<u> </u>						

For discharges where metals are believed present, please fill out the following:	
Step 1: Do any of the metals in the influent have a reasonable potential to exceed the effluent limits in Appendix III (i.e., the limits set at zero to five dilutions)? Y X N	If yes, which metals? Arsenic, Chromium, Copper, Iron, Lead, Mercury, Nickel, Zinc
Step 2: For any metals which have reasonable potential to exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c) (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metals: DF:>100	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? Y_X_NIf "Yes," list which metals: Iron Lead, Mercury

treatment unit (check all that apply): Chlorination Dechlorination Other (please describe): Sand Filter Composed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate(s) (gallons per minute) of the treatment system: 50 gpm Average flow rate of discharge Maximum flow rate of treatment system Design flow rate of treatment system d) A description of chemical additives being used or planned to be used (attach MSDS sheets): S. Receiving surface water(s). Please provide information about the receiving water s), using separate sheets as necessary:	AC filter
Chlorination Dechlorination Other (please describe): Sand Filter c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate(s) (gallons per minute) of the treatment system: 50 gpm Average flow rate of discharge Maximum flow rate of treatment system Design flow rate of treatment system d) A description of chemical additives being used or planned to be used (attach MSDS sheets): Receiving surface water(s). Please provide information about the receiving water s), using separate sheets as necessary: Identify the discharge pathway: Direct Within facility X Storm drain River/brook X Wetlands Othe	
discharge and the design flow rate(s) (gallons per minute) of the treatment system: 50 gpm Average flow rate of discharge Maximum flow rate of treatment system Design flow rate of treatment system d) A description of chemical additives being used or planned to be used (attach MSDS sheets): Receiving surface water(s). Please provide information about the receiving water s), using separate sheets as necessary: Identify the discharge pathway: Direct Within facility X Storm drain River/brook X Wetlands Othe discharge pathway. Othe discharge pathway, including the name(s) of the receiving waters: Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters: reated effluent will be discharged directly to tidal ditch about 1,500 feet upstream of Island End River. Topographic plan is attached. The tidal ditch enters an approxing culvert which discharges to the Island End River. The tidal ditch receives stormwater discharges from portions of Chelsea and Everett. The drainage ditch emband	
Average flow rate of discharge Maximum flow rate of treatment system Design flow rate of treatment system d) A description of chemical additives being used or planned to be used (attach MSDS sheets): Receiving surface water(s). Please provide information about the receiving water s), using separate sheets as necessary: Identify the discharge pathway: Direct Within facility_X_ Storm drain River/brook_X_ Wetlands Other discharge pathway: Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters: Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters:	
Average flow rate of discharge Maximum flow rate of treatment system Design low rate of treatment system 1) A description of chemical additives being used or planned to be used (attach MSDS sheets): Receiving surface water(s). Please provide information about the receiving water s), using separate sheets as necessary: Identify the discharge pathway: Direct Within facility_X Storm drain River/brook_X_ Wetlands Oth discharge pathway: Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters: eated effluent will be discharged directly to tidal ditch about 1,500 feet upstream of Island End River. Topographic plan is attached. The tidal ditch enters an approxing culvert which discharges to the Island End River. The tidal ditch recieves stormwater discharges from portions of Chelsea and Everett. The drainage ditch embanl	
A description of chemical additives being used or planned to be used (attach MSDS sheets): Receiving surface water(s). Please provide information about the receiving water s), using separate sheets as necessary: Identify the discharge pathway: Direct Within facility X Storm drain River/brook X Wetlands Other discharge pathway: Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters: The defilient will be discharged directly to tidal ditch about 1,500 feet upstream of Island End River. Topographic plan is attached. The tidal ditch enters an approxing culvert which discharges to the Island End River. The tidal ditch receives stormwater discharges from portions of Chelsea and Everett. The drainage ditch emband	
A description of chemical additives being used or planned to be used (attach MSDS sheets): Receiving surface water(s). Please provide information about the receiving water s), using separate sheets as necessary: Identify the discharge pathway: Direct Within facility_X_ Storm drain River/brook_X_ Wetlands Other discharge pathway	
Receiving surface water(s). Please provide information about the receiving water s), using separate sheets as necessary: Identify the	
Receiving surface water(s). Please provide information about the receiving water s), using separate sheets as necessary: Identify the discharge pathway: Direct	
Identify the discharge pathway: Direct	
Identify the discharge pathway: Direct	
discharge pathway: Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters: reated effluent will be discharged directly to tidal ditch about 1,500 feet upstream of Island End River. Topographic plan is attached. The tidal ditch enters an approxing culvert which discharges to the Island End River. The tidal ditch receives stormwater discharges from portions of Chelsea and Everett. The drainage ditch emband	
Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters: reated effluent will be discharged directly to tidal ditch about 1,500 feet upstream of Island End River. Topographic plan is attached. The tidal ditch enters an approxing culvert which discharges to the Island End River. The tidal ditch receives stormwater discharges from portions of Chelsea and Everett. The drainage ditch emband	ner (describe)
eated effluent will be discharged directly to tidal ditch about 1,500 feet upstream of Island End River. Topographic plan is attached. The tidal ditch enters an approxing culvert which discharges to the Island End River. The tidal ditch recieves stormwater discharges from portions of Chelsea and Everett. The drainage ditch embank	
reated effluent will be discharged directly to tidal ditch about 1,500 feet upstream of Island End River. Topographic plan is attached. The tidal ditch enters an approxing culvert which discharges to the Island End River. The tidal ditch recieves stormwater discharges from portions of Chelsea and Everett. The drainage ditch emband	
eated effluent will be discharged directly to tidal ditch about 1,500 feet upstream of Island End River. Topographic plan is attached. The tidal ditch enters an approxing culvert which discharges to the Island End River. The tidal ditch recieves stormwater discharges from portions of Chelsea and Everett. The drainage ditch embanl	
reated effluent will be discharged directly to tidal ditch about 1,500 feet upstream of Island End River. Topographic plan is attached. The tidal ditch enters an approx ng culvert which discharges to the Island End River. The tidal ditch recieves stormwater discharges from portions of Chelsea and Everett. The drainage ditch embanl	
ng culvert which discharges to the Island End River. The tidal ditch recieves stormwater discharges from portions of Chelsea and Everett. The drainage ditch emband	
) rap. Direct discharge will be to rip rap embankment to prevent erosion. The Island End River is a tributary to the Mystic River. No drinking water sources or wetla	
	ind areas are
e proposed discharge area or downstream.	

4. Treatment system information. Please describe the treatment system using separate sheets as necessary including:

c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.
d) Provide the state water quality classification of the receiving water: Class SB (314 CMR 4.00)
e) Provide the reported or calculated seven day-ten year low flow (7Q 10) of the receiving watercfs Please attach any calculation sheets used to support stream flow and dilution calculations.
f) Is the receiving water a listed 303(d) water quality impaired or limited water? yes X No If yes, for which pollutant(s)? 1700 Pathogens 1900 Oil and Grease 2000 Taste, Odor, and Color
Is there a TMDL? yes No X_ If yes, for which pollutant(s)?
6. Results of Consultation with Federal Services: Please provide the following information according to requirements of Part I.B.4 and Appendices 11 and VII.
a) Are any listed threatened or endangered species, or designated critical habitat, in proximity to the discharge? YesNo_X . Has any consultation with the federal services been completed? YesNo_X or is consultation underway? YesNo_X
What were the results of the consultation with the U.S. Fish and Wildlife Service and/or National Marine Fisheries Service ce (check one): a "no jeopardy" opinion?or written concurrenceon a finding that the discharges are not likely to adversely affect any endangered species or critical habitat?
b) Are any historic properties listed or eligible for listing on the National Register of Historic Places located on the facility or site or in proximity to the discharge? YesNo_X Have any state or tribal historic preservation officer been consulted in this determination (Massachusetts only)? YesNo_X

7. Supplemental information. :

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

The project site is the location of contaminants in soil and groundwater that are potentially related to historic coal tar and petroleum sources. The site is a location of a former upriver portion of the Island End River known as the Oxbow. The Oxbow was filled in during the late 1800s through the early 1960s. The area is currently a warehouse and industrial district. Contaminants potentially related to coal tar and/or petroleum were detected in soil and groundwater during construction work on the property in 1995. Response actions are ongoing under the MCP (310 CMR 40.0000) under Release Tracking Number 3-13158. The project that is the subject of this RGP consists of construction dewatering and discharge for installation and repair of a sanitary sewer within the site.

Sampling for the purposes of this Remediation General Permit was performed on April 14, 2006. As per discussion of Mr. Andrew Adinolfi of GEI Consultants, Inc. with Mr. Victor Alvarez of EPA Region 1, samples were collected from two monitoring wells in the project area (GZ-103 and GZ-104, shown on plan), composited (except for volatiles samples as described below), and analyzed for compounds listed in the 2005 NPDES Remediation General Permit (MAG910000), Appendix III – Effluent Limitations. The following procedures were followed to ensure that the samples would represent influent conditions to the extent feasible:

- Wells were purged using a bailer until pH, temperature, and conductivity of the water stabilized.
- Samples were collected using a bailer. The standard practice for sampling groundwater in monitoring wells (low-flow sampling) was not employed because low-flow sampling is intended to identify dissolved compounds, and may not adequately quantify contaminants adsorbed to suspended solids that may be in the influent for this project. Therefore, no attempts were made to minimize turbidity or suspended solids.
- Samples collected for volatile compound analyses were submitted and analyzed as two separate samples (one from each well GZ103 and GZ104), to avoid volatile losses that would occur during compositing.
- Samples collected for analyses other than volatiles were composited and submitted as one sample (GZ103104).
- Samples were submitted to Alpha Analytical of Westborough, Massachusetts under chain-of-custody procedures. Alpha's laboratory report is attached.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name:

Operator signature: 7.5. Shea

Title: Project Manager

Date: 6/7/06

This Image provided by MassGIS is from U.S.G.S. Topographic 7.5 X 15 Minute Series Boston North, MA Quadrangle, 1987. Datum is National Geodetic Vertical Datum (NGVD). Contour Interval is 3 Meters.

MASSACHUSETTS QUADRANGLE LOCATION

Utility-Related Abatement Measure 34 Market Street Everett, Massachusetts

KeySpan Corporation Brooklyn, New York

SITE LOCATION MAP

Project 982482 June 2006

Fig. 1

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: GEI Consultants

Laboratory Job Number: L0605351

Address: 1021 Main Street

Winchester, MA 01890-1943

Date Received: 14-APR-2006

Attn: Mr. Andy Adinolfi

Date Reported: 19-APR-2006

Project Number: 982482-2

Delivery Method: Alpha

Site: BOSTON MARKET TERMINAL

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L0605351-01 L0605351-03 L0605351-04 L0605351-05	982482-GZ103104-COMP 982482-GZ103104-GZ103 982482-GZ103104-GZ104 TRIP BLANK	EVERETT, MA EVERETT, MA EVERETT, MA EVERETT, MA

Authorized by: Kathle M. Chui
Technical Representative

04190617:09 Page 1 of 26

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

ALPHA ANALYTICAL LABORATORIES NARRATIVE REPORT

Laboratory Job Number: L0605351

Volatile Organics

L0605351-03 required re-analysis on a 5x dilution in order to quantitate the sample within the range of the calibration. The result is reported as a greater than value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the range of the calibration.

SemiVolatile Organics

L0605351-01 required re-analysis on a 5x dilution in order to quantitate the sample within the range of the calibration. The result is reported as a greater than value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the range of the calibration.

An MS/MSD could not be performed due to limited sample volume submitted for analysis.

PAH

10605351-01 has elevated limits of detection due to the 20x dilution required by the elevated concentrations of target compounds in the sample.

An MS/MSD could not be performed due to limited sample volume submitted for analysis.

Hexavalent Chromium

The MS % recovery is invalid due to matrix interference.

TPH-1664

The laboratory duplicate RPD is above the acceptance criteria for the method due to sample non-homogeneity (analyzed from different containers—the bottle analyzed as the sample contained more sediment).

Total Metals

The MS % recoveries for the following elements are below the acceptance criteria for the method. Post analytical spikes were performed with acceptable recoveries:

Antimony: 106%

Cadmium: 94%

Silver: 98%

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0605351-01

Date Collected: 14-APR-2006 13:30

982482-GZ103104-COMP

Date Received: 14-APR-2006

Sample Matrix: WATER Date Reported: 19-APR-2006

Condition of Sample: Satisfactory

Field Prep: None

Number & Type of Containers: 7-Amber, 4-Plastic, 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	
					PREP AN	AL
Solids, Total Suspended	3200	mg/l	200	4 160.2	0418	15:15 DT
Cyanide, Total	0.107	mg/l	0.005	4 335.2	0418 15:45 0418	23:40 DD
Chlorine, Total Residual	ND	mg/l	0.05	4 330.1	0414	19:30 DP
рΗ	7.0	su	-	4 150.1	0414	20:55 DP
ГРН	89.0	mg/l	4.00	74 1664A	0418 13:30 0418	17:25 DP
Phenolics, Total	0.43	mg/l	0.03	4 420.1	0418	09:30 AT
Chromium, Hexavalent	ND	mg/l	0.02	30 3500CR-D	0414 22:40 0414	22:40 DP
Cyanide, Reactive	ND	mg/l	0.05	1 7.3	0418	16:30 HG
Sulfide, Reactive	9.0	mg/l	0.10	1 7.3	0418	16:30 HG
Total Metals						
Antimony, Total	0.0021	mg/l	0.0005	1 6020	0418 18:00 0419	01:01 BM
Arsenic, Total	0.042	mg/l	0.005	19 200.7	0417 19:30 0418	
Cadmium, Total	0.0045	mg/l	0.0005	1 6020	0418 18:00 0419	
Chromium, Total	0.10	mg/l	0.01	19 200.7	0417 19:30 0418	
Copper, Total	0.27	mg/l	0.01	19 200.7	0417 19:30 0418	
Iron, Total	83	mg/l	0.05	19 200.7	0417 19:30 0418	
Lead, Total	0.5613	mg/l	0.0005	1 6020	0418 18:00 0419	
Manganese, Total	2.0	mg/l	0.01	19 200.7	0417 19:30 0418	
Mercury, Total	0.0066	mg/l	0.0002	4 245.2	0417 17:00 0418	
Nickel, Total	0.078	mg/l	0.025	19 200.7	0417 19:30 0418	
Selenium, Total	ND	mg/l	0.005	19 200.7	0417 19:30 0418	
Silver, Total	ND	mg/l	0.0005	1 6020	0418 18:00 0419	
Zinc, Total	1.00	mg/l	0.050	19 200.7	0417 19:30 0418	
SVOC's by GC/MS 8270				1 8270C	0417 15:20 0418	14:22 RL
Acenaphthene	73	ug/l	4.8			
Benzidine	ND	ug/l	48.			
1,2,4-Trichlorobenzene	ND	ug/l	4.8			
Hexachlorobenzene	ND	ug/l	4.8			

Laboratory Sample Number: L0605351-01

982482-GZ103104-COMP

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANA L
······································		******			
SVOC's by GC/MS 8270 cont'd				1 8270C	0417 15:20 0418 14:22 RL
Bis(2-chloroethyl)ether	ND	ug/l	4.8		
1-Chloronaphthalene	ND	ug/l	4.8		
2-Chloronaphthalene	ND	ug/l	5.7		
1,2-Dichlorobenzene	ND	ug/l	4.8		
1,3-Dichlorobenzene	ND	ug/l	4.8		
1,4-Dichlorobenzene	ND	ug/l	4.8		
3,3'-Dichlorobenzidine	ND	ug/l	48.		
2,4-Dinitrotoluene	ND	ug/l	5.7		
2,6-Dinitrotoluene	ND	ug/l	4.8		
Azobenzene	ND	ug/l	4.8		
Fluoranthene	110	ug/l	4.8		
4-Chlorophenyl phenyl ether	ND	ug/l	4.8		
4-Bromophenyl phenyl ether	ND	ug/l	4.8		
Bis(2-chloroisopropyl)ether	ND	ug/l	4.8		
Bis(2-chloroethoxy)methane	ND	ug/l	4.8		
Hexachlorobutadiene	ND	ug/l	9.6		
Hexachlorocyclopentadiene	ND	ug/l	9.6		
Hexachloroethane	ND	ug/l	4.8		
Isophorone	ND	ug/l	4.8		
Naphthalene	>200	ug/l	4.8		
Nitrobenzene	ND	ug/l	4.8		
NDPA/DPA	ND	ug/l	14.		
n-Nitrosodi-n-propylamine	ND	ug/l	4.8		
Bis(2-ethylhexyl)phthalate	ND	ug/l	9.6		
Butyl benzyl phthalate	ND	ug/l	4.8		
Di-n-butylphthalate	ND	ug/l	4.8		
Di-n-octylphthalate	ND	ug/l	4.8		
Diethyl phthalate	ND	ug/l	4.8		
Dimethyl phthalate	ND	ug/l	4.8		
Benzo(a)anthracene	35	ug/l	4.8		
Benzo(a)pyrene	24	ug/l	4.8		
Benzo(b) fluoranthene	24	ug/l	4.8		
Benzo(k)fluoranthene	21	ug/l	4.8		
Chrysene	27	ug/l	4.8		
Acenaphthylene	16	ug/l	4.8		
Anthracene	34	ug/l	4.8		
Benzo(ghi)perylene	12	ug/l	4.8		
Fluorene	87	ug/l	4.8		
Phenanthrene	140	ug/l	4.8		
Dibenzo(a, h) anthracene	ND	ug/l	4.8		
Indeno(1,2,3-cd)pyrene	13	ug/l	6.7		
Pyrene	78	ug/l	4.8		
Benzo(e)pyrene	16	ug/l ug/l	4.8		
Biphenyl	5.3	ug/l ug/l	4.8		
Perylene	5.0	ug/l ug/l	4.8		
Peryiene Aniline	ND	_	4.8 9.6		
		ug/l			
4-Chloroaniline	ND 36	ug/l	4.8		
1-Methylnaphthalene	36	ug/l	4.8		
2-Nitroaniline	ND	ug/l	4.8		

Laboratory Sample Number: L0605351-01

982482-GZ103104-COMP

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP ANAL	
SVOC's by GC/MS 8270 cont'd				1 8270C	0417 15:20 0418 14:2	2 RI.
3-Nitroaniline	ND	ug/l	4.8			
4-Nitroaniline	ND	ug/l	6.7			
Dibenzofuran	54	ug/l	4.8			
a,a-Dimethylphenethylamine	ND	ug/l	48.			
Hexachloropropene	ND	ug/l	9.6			
Nitrosodi-n-butylamine	ND	ug/l	9.6			
2-Methylnaphthalene	37	ug/l	4.8			
1,2,4,5-Tetrachlorobenzene	ND	ug/l	19.			
Pentachlorobenzene	ND	ug/l	19.			
a-Naphthylamine	ND	ug/l	19.			
b-Naphthylamine	ND	ug/l	19.			
Phenacetin	ND	ug/l	9.6			
Dimethoate	ND	ug/l	19.			
4-Aminobiphenyl	ND	ug/l	9.6			
Pentachloronitrobenzene	ND	ug/l	9.6			
Isodrin	ND	ug/l	9.6			
p-Dimethylaminoazobenzene	ND	ug/l	9.6			
Chlorobenzilate	ND	ug/l	19.			
3-Methylcholanthrene	ND	ug/l	19.			
Ethyl Methanesulfonate	ND	ug/l	14.			
Acetophenone	ND	ug/l	19.			
Nitrosodipiperidine	ND	ug/l	19.			
7,12-Dimethylbenz(a)anthracen		ug/l	9.6			
n-Nitrosodimethylamine	ND	ug/l	48.			
2,4,6-Trichlorophenol	ND	ug/l	4.8			
p-Chloro-m-cresol	ND	ug/l	4.8			
2-Chlorophenol	ND	ug/l	5.7			
2,4-Dichlorophenol	ND	ug/l	9.6			
2,4-Dimethylphenol	ND	ug/l	9.6			
2-Nitrophenol	ND	ug/l	19.			
4-Nitrophenol	ND	ug/l	9.6			
2,4-Dinitrophenol	ND	ug/l ug/l	19.			
4,6-Dinitro-o-cresol	ND	ug/l ug/l	19.			
Pentachlorophenol	ND ND	ug/l ug/l	19. 19.			
Phenol	ND		19. 6.7			
2-Methylphenol	ND ND	ug/l	5.7			
		ug/l				
3-Methylphenol/4-Methylphenol 2,4,5-Trichlorophenol		ug/l	5.7			
· ·	ND	ug/l	4.8			
2,6-Dichlorophenol Benzoic Acid	ND	ug/l	9.6			
	ND	ug/l	48.			
Benzyl Alcohol	ND	ug/l	9.6			
Carbazole	43	ug/l	4.8			
Pyridine	ND	ug/l	48.			
2-Picoline	ND	ug/l	19.			
Pronamide	ND	ug/l	19.			
Methyl methanesulfonate	ND	ug/l	19.			

Laboratory Sample Number: L0605351-01

982482-GZ103104-COMP

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I	
					PREP	ANAL
VOC's by GC/MS 8270 cont'd				1 8270C	0417 15:20	0418 14:22 RL
Surrogate(s)	Recovery		OC Cri		0417 15120	0410 14.22 ND
-Fluorophenol	37.0	8	21-120			
henol-d6	35.0	8	10-120			
itrobenzene-d5	62.0	ક	23-120			
-Fluorobiphenyl	60.0	8	43-120			
,4,6-Tribromophenol	71.0	8	10-120			
-Terphenyl-d14	75.0	8	33-120			
VOC's by GC/MS 8270				1 8270C	0417 15:20	0418 16:01 RL
aphthalene	410	ug/l	24.			
AH by GC/MS SIM 8270M				1 8270C-M	0417 15:20	0419 07:06 RL
cenaphthene	72	ug/l	3.8			
-Chloronaphthalene	ND	ug/l	3.8			
luoranthene	130	ug/l	3.8			
exachlorobutadiene	ND	ug/l	9.6			
aphthalene	380	ug/l	3.8			
enzo(a)anthracene	45	ug/l	3.8			
enzo(a)pyrene	35	ug/l	3.8			
enzo(b)fluoranthene	30	ug/l	3.8			
enzo(k)fluoranthene	43	ug/l	3.8			
hrysene	29	ug/l	3.8			
cenaphthylene	18	ug/l	3.8			
nthracene	39	ug/l	3.8			
enzo(ghi)perylene	12	ug/l	3.8			
luorene	91	ug/l	3.8			
henanthrene	130	ug/l	3.8			
ibenzo(a,h)anthracene	4.8	ug/l	3.8			
ndeno(1,2,3-cd)Pyrene	16	ug/l	3.8			
yrene	91	ug/l	3.8			
-Methylnaphthalene	38	ug/l	3.8			
-Methylnaphthalene	40	ug/l	3.8			
entachlorophenol	ND	ug/l	15.			
exachlorobenzene	ND	ug/l	15.			
erylene	7.0	ug/l	3.8			
iphenyl	4.9	ug/l	3.8			
,6-Dimethylnaphthalene	8.6	ug/l	3.8			
-Methylphenanthrene	9.5	ug/l	3.8			
enzo(e)Pyrene	21	ug/l	3.8			
exachloroethane	ND	ug/l	15.			
urrogate(s)	Recovery		QC Cri	teria		
-Fluorophenol	43.0	8	21-120			
henol-d6	41.0	ક	10-120			
itrobenzene-d5	64.0	8	23-120			
-Fluorobiphenyl	71.0	용	43-120			
,4,6-Tribromophenol	26.0	8	10-120			
-Terphenyl-d14	82.0	ક	33-120			

Laboratory Sample Number: L0605351-01

982482-GZ103104-COMP

PARAMETER	RESULT	UNITS	RDL	REF M	METHOD	DATE		ID
						PREP	ANAL	
Polychlorinated Biphenyls				5	608	0417 15:15	0418 16-59	.TR
Aroclor 1016	ND	ug/l	0.252			***************************************	0410 10.00	OD
Aroclor 1221	ND	ug/l	0.252					
Aroclor 1232	ND	ug/l	0.252					
Aroclor 1248	ND	ug/l	0.252					
Aroclor 1254	ND	ug/l	0.252					
Aroclor 1260	ND	ug/l	0.252					
Surrogate(s)	Recovery		QC Cri	teria	a			
2,4,5,6-Tetrachloro-m-xylene	88.0	8	30-150					
Decachlorobiphenyl	54.0	8	30-150					

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0605351-03

Date Collected: 14-APR-2006 14:15

982482-GZ103104-GZ103

Date Received: 14-APR-2006

Sample Matrix: WATER

Date Reported: 19-APR-2006

Condition of Sample: Satisfactory

Field Prep:

None

Number & Type of Containers: 4-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I		
					PREP	ANAL	
Pesticides by GC 504				14 504.1	0419 10-41	0419 14:26 AK	
1,2-Dibromoethane	ND	ug/l	0.020	24 00111	0415 10.41	0419 14.20 AK	
Volatile Organics by GC/MS	624			5 624		0419 12:07 MM	
Methylene chloride	ND	ug/l	12.				
1,1-Dichloroethane	ND	ug/l	3.8				
Chloroform	ND	ug/l	3.8				
Carbon tetrachloride	ND	ug/l	2.5				
1,2-Dichloropropane	ND	ug/l	8.8				
Dibromochloromethane	ND	ug/l	2.5				
1,1,2-Trichloroethane	ND	ug/l	3.8				
2-Chloroethylvinyl ether	ND	ug/l	25.				
Tetrachloroethene	ND	ug/l	3.8				
Chlorobenzene	ND	ug/l	8.8				
Trichlorofluoromethane	ND	ug/l	12.				
1,2-Dichloroethane	ND	ug/1	3.8				
1,1,1-Trichloroethane	ND	ug/l	5.0				
Bromodichloromethane	ND	ug/l	2.5				
trans-1,3-Dichloropropene	ND	ug/l	3.8				
cis-1,3-Dichloropropene	ND	ug/l	3.8				
Bromoform	ND	ug/l	2.5				
1,1,2,2-Tetrachloroethane	ND	ug/l	2.5				
Benzene	>500	ug/l	2.5				
Toluene	50	ug/l	2.5				
Ethylbenzene	6.9	ug/l	2.5				
Chloromethane	ND	ug/l	25.				
Bromomethane	ND	ug/l	12.				
Vinyl chloride	ND	ug/l	5.0				
Chloroethane	ND	ug/l	5.0				
1,1-Dichloroethene	ND	ug/l	2.5				
trans-1,2-Dichloroethene	ND ND	ug/l	3.8				
cis-1,2-Dichloroethene	ND ND	ug/l ug/l	2.5				
Trichloroethene	ND	ug/l	2.5				
1,2-Dichlorobenzene	ND	ug/l	12.				
1,3-Dichlorobenzene	ND ND	ug/l ug/l	12.				
1,4-Dichlorobenzene							
	ND	ug/l	12.				
p/m-Xylene	39 12	ug/l	5.0				
o-xylene		ug/1	2.5				
Xylene (Total)	50	ug/l	5.0				

Laboratory Sample Number: L0605351-03

982482-GZ103104-GZ103

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE		ID
					PREP	ANAL	
Volatile Organics by GC/MS	624 cont'd			5 624		0419 12:0	7 MM
Styrene	ND	ug/l	2.5				
Acetone	ND	ug/l	25.				
Carbon disulfide	ND	ug/l	12.				
2-Butanone	ND	ug/l	25.				
Jinyl acetate	ND	ug/l	50.				
-Methyl-2-pentanone	ND	ug/l	25.				
2-Hexanone	ND	ug/l	25.				
Acrolein	ND	ug/l	20.				
Acrylonitrile	ND	ug/l	25.				
Methyl tert butyl ether	ND	ug/l	50.				
l,4-Dioxane	ND	ug/l	5000				
Tert-Butyl Alcohol	ND	ug/l	250				
Pertiary-Amyl Methyl Ether	ND	ug/l	50.				
Surrogate(s)	Recovery		QC Cri	teria			
Pentafluorobenzene	97.0	8	80-120)			
Fluorobenzene	109	8	80-120)			
1-Bromofluorobenzene	108	8	80-120)			
Volatile Organics by GC/MS	624			5 624		0419 15:0	7 MM
Benzene	540	ug/l	5.0				
Surrogate(s)	Recovery		QC Cri	teria			
Pentafluorobenzene	88.0	ક	80-120)			
Fluorobenzene	97.0	용	80-120)			
4-Bromofluorobenzene	107	8	80-120)			

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0605351-04

Date Collected: 14-APR-2006 12:45

982482-GZ103104-GZ104

Date Received: 14-APR-2006

Sample Matrix: WATER Date Reported: 19-APR-2006

Condition of Sample: Satisfactory

Field Prep: None

Number & Type of Containers: 4-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE		ID	
					PREP	ANAL		
Pesticides by GC 504				14 504.1	0419 10:41	0419 14:	49 AK	
1,2-Dibromoethane	ND	ug/l	0.020					
Volatile Organics by GC/MS	624			5 624		0419 12:	43 MM	
Methylene chloride	ND	ug/l	5.0					
1,1-Dichloroethane	ND	ug/l	1.5					
Chloroform	ND	ug/l	1.5					
Carbon tetrachloride	ND	ug/l	1.0					
1,2-Dichloropropane	ND	ug/l	3.5					
Dibromochloromethane	ND	ug/l	1.0					
1,1,2-Trichloroethane	ND	ug/l	1.5					
2-Chloroethylvinyl ether	ND	ug/l	10.					
Tetrachloroethene	ND	ug/l	1.5					
Chlorobenzene	ND	ug/l	3.5					
Trichlorofluoromethane	ND	ug/l	5.0					
1,2-Dichloroethane	ND	ug/l	1.5					
1,1,1-Trichloroethane	ND	ug/l	2.0					
Bromodichloromethane	ND	ug/l	1.0					
trans-1,3-Dichloropropene	ND	ug/l	1.5					
cis-1,3-Dichloropropene	ND	ug/l	1.5					
Bromoform	ND	ug/l	1.0					
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0					
Benzene	ND	ug/l	1.0					
Toluene	ND	ug/l	1.0					
Ethylbenzene	ND	ug/l	1.0					
Chloromethane	ND	ug/l	10.					
Bromomethane	ND	ug/l	5.0					
Vinyl chloride	ND	ug/l	2.0					
Chloroethane	ND	ug/l	2.0					
1,1-Dichloroethene	ND	ug/l	1.0					
trans-1,2-Dichloroethene	ND	ug/l	1.5					
cis-1,2-Dichloroethene	ND	ug/l	1.0					
Trichloroethene	ND	ug/l	1.0					
1,2-Dichlorobenzene	ND	ug/l	5.0					
1,3-Dichlorobenzene	ND	ug/l	5.0					
1,4-Dichlorobenzene	ND	ug/l	5.0					
p/m-Xylene	ND	ug/l	2.0					
o-xylene	ND	ug/l	1.0					
1	ND	ug/l	2.0					

Comments: Complete list of References and Glossary of Terms found in Addendum I

04190617:09 Page 10 of 26

Laboratory Sample Number: L0605351-04

982482-GZ103104-GZ104

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA	TE	ID
						PREP	ANAL	
Volatile Organics by GC/MS (524 cont'd			5	624		0419 12:43	3 MM
Styrene	ND	ug/l	1.0					
Acetone	ND	ug/l	10.					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	10.					
Vinyl acetate	ND	ug/l	20.					
4-Methyl-2-pentanone	ND	ug/l	10.					
2-Hexanone	ND	ug/l	10.					
Acrolein	ND	ug/l	8.0					
Acrylonitrile	ND	ug/l	10.					
Methyl tert butyl ether	ND	ug/l	20.					
1,4-Dioxane	ND	ug/l	2000					
Tert-Butyl Alcohol	ND	ug/l	100					
Tertiary-Amyl Methyl Ether	ND	ug/l	20.					
Surrogate(s)	Recovery		QC Cr	iteri	a			
Pentafluorobenzene	96.0	ક્ષ	80-12	0				
Fluorobenzene	101	ક	80-12	0				
4-Bromofluorobenzene	108	ક્ર	80-12	0				

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0605351-05

Date Collected: 14-APR-2006 12:45 Date Received: 14-APR-2006

Sample Matrix:

WATER

Date Reported: 19-APR-2006

Condition of Sample:

Satisfactory

TRIP BLANK

Field Prep: None

Number & Type of Containers: 2-Vial

PARAMETER RESULT UNITS RDL REF METHOD DATE ID PREP ANAL

****** THIS SAMPLE IS ON HOLD ******

Comments: Complete list of References and Glossary of Terms found in Addendum ${\tt I}$

04190617:09 Page 12 of 26

Laboratory Job Number: L0605351

Parameter		Value 1	Value 2	Units	RPD	RPD Limits
Sol	ids, Total	Suspended for	or sample(s)	01 (L0605	351-01,	WG236424-2)
Solids, Total Suspe	ended	3200	2800	mg/l	13	20
O	Cyanide, T		mple(s) 01 (
Cyanide, Total		0.107	0.106	mg/l	1	30
	TPH	for sample(s) 01 (L0605	351-01, WG	236464-4	1)
TPH		89.0	49.6	mg/l	57	34
]	Phenolics,	Total for s	ample(s) 01	(L0605351-	01, WG23	36466-4)
Phenolics, Total		0.43	0.41	mg/l	5	
Ch:	romium, Hex	avalent for	sample(s) ()1 (L060535	1-01, WG	G236217-4)
Chromium, Hexavale	nt	ND	ND	mg/l	NC	
(Cyanide, Re	active for	sample(s) 01	(L0605351	-01, WG2	236470-3)
Cyanide, Reactive		ND	ND	mg/l	NC	25
:	Sulfide, Re	active for	sample(s) 01	(L0605351	-01, WG2	236472-3)
Sulfide, Reactive		9.0	8.3	mg/l	8	25
	Total Met	als for sam	ple(s) 01 (I	L0605351-01	, WG2365	501-1)
Antimony, Total		0.0021	0.0023	mg/l	11	20
Cadmium, Total		0.0045	0.0048	mg/l	7	20
Lead, Total		0.5613	0.6084	mg/l	8	20
Silver, Total		ND	ND	mg/l	NC	20
	Total Met	als for sam	ple(s) 01 (1	L0605351-01	, WG2363	326-3)
Mercury, Total		0.0066	0.0061	mg/l	8	
Volatile	Organics h	y GC/MS 624	for sample	(s) 03-04 (L0605153	3-03, WG236578-2)
Methylene chloride		ND	ND	ug/l	NC	30
1,1-Dichloroethane		ND	ND	ug/l	NC	30
Chloroform		ND	ND	ug/l	NC	30
Carbon tetrachlori	de	ND	ND	ug/l	NC	30
1,2-Dichloropropan	e	ND	ND	ug/l	NC	30
Dibromochlorometha	ne	ND	ND	ug/l	NC	30
1,1,2-Trichloroeth	ane	ND	ND	ug/l	NC	30
2-Chloroethylvinyl	ether	ND	ND	ug/l	NC	30
Tetrachloroethene		ND	ND	ug/l	NC	30
Chlorobenzene		ND	ND	ug/l	NC	30
Trichlorofluoromet	hane	ND	ND	ug/l	NC	30
1,2-Dichloroethane		ND	ND	ug/l	NC	30
1,1,1-Trichloroeth	ane	ND	ND	ug/l	NC	30
Bromodichlorometha		ND	ND	ug/l	NC	30
trans-1,3-Dichloro	propene	ND	ND	ug/l	NC	30
cis-1,3-Dichloropr		ND	ND	ug/l	NC	30
Bromoform		ND	ND	ug/l	NC	30
1,1,2,2-Tetrachlor	oethane	ND	ND	ug/l	NC	30

Laboratory Job Number: L0605351

Parameter	Value 1	Value 2	Units	RPD	RPD L	imits
Volatile Organics by	y GC/MS 624	for sample	e(s) 03-04	(L060515	3-03, WG	236578-2)
Chloromethane	ND	ND	ug/l	NC	30	
Bromomethane	ND	ND	ug/l	NC	30	
Vinyl chloride	ND	ND	ug/l	NC	30	
Chloroethane	ND	ND	ug/l	NC	30	
1,1-Dichloroethene	ND	ND	ug/l	NC	30	
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	30	
cis-1,2-Dichloroethene	ND	ND	ug/l	NC	30	
Trichloroethene	ND	ND	ug/l	NC	30	
1,2-Dichlorobenzene	ND	ND	ug/l	NC	30	
1,3-Dichlorobenzene	ND	ND	ug/l	NC	30	
1,4-Dichlorobenzene	ND	ND	ug/l	NC	30	
Surrogate(s)	Reco	very				QC Criteria
Pentafluorobenzene	87.0	91.0	8			80-120
Fluorobenzene	96.0	99.0	8			80-120
4-Bromofluorobenzene	107	102	8			80-120
Polychlorinated	Biphenyls	for sample	(s) 01 (L0	605351-01	, WG2363	38-4)
Aroclor 1016	ND	ND	ug/l	NC	30	
Aroclor 1221	ND	ND	ug/l	NC	30	
Aroclor 1232	ND	ND	ug/l	NC	30	
Aroclor 1248	ND	ND	ug/l	NC	30	
Aroclor 1254	ND	ND	ug/l	NC	30	
Aroclor 1260	ND	ND	ug/l	NC	30	
Surrogate(s)	Reco	very				QC Criteria
2,4,5,6-Tetrachloro-m-xylene	88.0	77.0	8			30-150
Decachlorobiphenyl	54.0	48.0	8			30-150

Laboratory Job Number: L0605351

Parameter	% Recovery QC Criteria
Cyanide, Total	Cyanide, Total LCS for sample(s) 01 (WG236451-2) 101 90-110
Chlorine, Total	ine, Total Residual LCS for sample(s) 01 (WG236597-2) Residual 105
рН	pH LCS for sample(s) 01 (WG236596-1) 100
TPH	TPH LCS for sample(s) 01 (WG236464-2) 90 64-132
Phenolics, Total	nenolics, Total LCS for sample(s) 01 (WG236466-2) 95
Chromium, Hexava	omium, Hexavalent LCS for sample(s) 01 (WG236217-2) Lent 100
Cyanide, Reactive	anide, Reactive LCS for sample(s) 01 (WG236470-2) e 62 30-125
Su Sulfide, Reactive	lfide, Reactive LCS for sample(s) 01 (WG236472-2) e 62 60-125
Antimony, Total Cadmium, Total Lead, Total Silver, Total	Total Metals LCS for sample(s) 01 (WG236501-4) 94 80-120 100 80-120 98 80-120 94 80-120
Arsenic, Total Chromium, Total Copper, Total Iron, Total Manganese, Total Nickel, Total Selenium, Total Zinc, Total	Total Metals LCS for sample(s) 01 (WG236594-2) 100 95 92 91 96 96 103 101
Mercury, Total	Total Metals LCS for sample(s) 01 (WG236326-1) 114
Pesti	cides by GC 504 LCS for sample(s) 03-04 (WG236552-2)

Laboratory Job Number: L0605351

Parameter	% Recovery QC Criteria
Volatile Organics by GC/MS 6	24 LCS for sample(s) 03-04 (WG236578-7)
Methylene chloride	89 10-221
1,1-Dichloroethane	85 59-155
Chloroform	98 51-138
Carbon tetrachloride	96 70-140
1,2-Dichloropropane	100 10-210
Dibromochloromethane	89 53-149
1,1,2-Trichloroethane	91 52-150
2-Chloroethylvinyl ether	82 10-305
Tetrachloroethene	87 64-148
Chlorobenzene	103 37-160
Trichlorofluoromethane	90 17-181
1,2-Dichloroethane	96 49-155
1,1,1-Trichloroethane	93 52-162
Bromodichloromethane	92 35-155
trans-1,3-Dichloropropene	82 17-183
cis-1,3-Dichloropropene	90 10-227
Bromoform	107 45-169
1,1,2,2-Tetrachloroethane	102 46-157
Benzene	99 37-151
Toluene	97 47-150
Ethylbenzene	112 37-162
Chloromethane	117 10-273
Bromomethane	91 10-242
Vinyl chloride	85 10-251
Chloroethane	95 14-230
1,1-Dichloroethene	89 10-234
trans-1,2-Dichloroethene	94 54-156
cis-1,2-Dichloroethene	93 60-140
Trichloroethene	94 71-157
1,2-Dichlorobenzene	96 18-190
1,3-Dichlorobenzene	96 59-156
1,4-Dichlorobenzene	99 18-190
p/m-Xylene	113 40-160
o-Xylene	110 40-160
XYLENE (TOTAL)	112 40-160
Styrene	120 40-160
Acetone	89 40-160
Carbon disulfide	95 40-160
2-Butanone	87 40-160
Vinyl acetate	78 40-160
4-Methyl-2-pentanone	83 40-160
2-Hexanone	78 40-160
Acrolein	113 40-160
Acrylonitrile	98 40-160
Surrogate(s)	
Pentafluorobenzene	109 80-120
Fluorobenzene	111 80-120

Laboratory Job Number: L0605351

Parameter	% Recovery C	C Criteria	
Volatile Organics by GC/MS 624			
4-Bromofluorobenzene	107	80-120	
SVOC's by GC/MS 8270 LCS	for sample(s) 01	(WG236588-2)	
Acenaphthene	68	46-118	
1,2,4-Trichlorobenzene	57	39-98	
2-Chloronaphthalene	69	40-140	
1,2-Dichlorobenzene	53	40-140	
1,4-Dichlorobenzene	51	36-97	
2,4-Dinitrotoluene	92	24-96	
2,6-Dinitrotoluene	90	40-140	
Fluoranthene	96	40-140	
4-Chlorophenyl phenyl ether	77	40-140	
n-Nitrosodi-n-propylamine	52	41-116	
Butyl benzyl phthalate	100	40-140	
Anthracene	78	40-140	
Pyrene	90	26-127	
Hexachloropropene	55	40-140	
P-Chloro-M-Cresol	70	23-97	
2-Chlorophenol	52	27-123	
2-Nitrophenol	61	30-130	
4-Nitrophenol	52	10-80	
2,4-Dinitrophenol	79	30-130	
Pentachlorophenol	90	9-103	
Phenol	25	12-110	
Surrogate(s)			
2-Fluorophenol	36	21-120	
Phenol-d6	32	10-120	
Nitrobenzene-d5	64	23-120	
2-Fluorobiphenyl	70	43-120	
2,4,6-Tribromophenol	88	10-120	
4-Terphenyl-d14	105	33-120	
PAH by GC/MS SIM 8270M LC	=		
Acenaphthene	55	46-118	
2-Chloronaphthalene	65		
Fluoranthene	92		
Anthracene	72		
Pyrene	90	26-127	
Pentachlorophenol	70	9-103	
Surrogate(s)	4-	01 100	
2-Fluorophenol	45	21-120	
Phenol-d6	38	10-120	
Nitrobenzene-d5	65	23-120	
2-Fluorobiphenyl	51	43-120	
2,4,6-Tribromophenol	58	10-120	
4-Terphenyl-d14	79	33-120	

Laboratory Job Number: L0605351

Parameter	Recovery	QC Criteria
Polychlorinated Biphenyls LCS for	sample(s)	01 (WG236338-2)
Aroclor 1016	74	40-140
Aroclor 1260	70	40-140
Surrogate(s)		
2,4,5,6-Tetrachloro-m-xylene	62	30-150
Decachlorobiphenyl	47	30-150
Cyanide, Total SPIKE for sample(s)	01 (L06053	51-01, WG236451-3)
Cyanide, Total	92	80-120
Phenolics, Total SPIKE for sample(s) Phenolics, Total	01 (L0605 95	351-01, WG236466-3)
Chromium, Hexavalent SPIKE for sample Chromium, Hexavalent	(s) 01 (L06 0	05351-01, WG236217-3)
Total Metals SPIKE for sample(s) ()1 (L060535	1-01, WG236501-2)
Antimony, Total	42	80-120
Cadmium, Total	76	80-120
Lead, Total	81	80-120
Silver, Total	72	80-120
Total Metals SPIKE for sample(s) (Mercury, Total	01 (L060535 74	1-01, WG236326-2)
neroury, rotar	7.4	
Pesticides by GC 504 SPIKE for sample(s $1,2\text{-Dibromoethane}$	s) 03-04 (L 94	0605351-03, WG236552-3)
Polychlorinated Biphenyls SPIKE for samp	ole(s) 01 (L0605351-01, WG236338-3)
Aroclor 1016	70	40-140
Aroclor 1260	70	40-140
Surrogate(s)		
2,4,5,6-Tetrachloro-m-xylene	80	30-150
Decachlorobiphenyl	48	30-150

Laboratory Job Number: L0605351

PARAMETER		RE	UNITS	RDL REE		METHOD	DATE :				
									PREP	ANAI	
			for	sample(s)	01		24-1)				
Solids, Total Susp	pended	ND		mg/l		5.0	4	160.2		0418 15	:15 DT
	Blank	Analysis	for	sample(s)	01	(WG23645	51-1)				
Cyanide, Total		ND		mg/l		0.005	4	335.2	0418 15:45	0418 23	:27 DD
	Blank	Analysis	for	sample(s)	01	(WG23659	97-1)				
Chlorine, Total Re	esidua.	l ND		mg/l		0.05	4	330.1		0414 19	30 DP
	Blank	Analysis	for	sample(s)	01	(WG23646	54-1)				
TPH		ND		mg/l		4.00	74	1664A	0418 13:30	0418 17	:25 DP
	Blank	Analysis	for	sample(s)	01	(WG23646	56-1)				
Phenolics, Total		ND		mg/l		0.03	4	420.1		0418 09	:30 AT
	Blank	Analysis	for	sample(s)	01	(WG23621	.7-1)				
Chromium, Hexavale	ent	ND		mg/l		0.02	30	3500CR-D	0414 22:40	0414 22	:40 DP
	Blank	Analysis	for	sample(s)	01	(WG23647	70-1)				
Cyanide, Reactive		ND		mg/l		0.05	1	7.3		0418 16	:30 HG
	Blank	Analysis	for	sample(s)	01	(WG23647	72-1)				
Sulfide, Reactive		ND		mg/l		0.10	1	7.3		0418 16:	:30 HG
Total Metals	Blank	Analysis	for	sample(s)	01	(WG23650)1-3)				
Antimony, Total		ND		mg/l		0.0005	1	6020	0418 18:00	0419 00:	:33 BM
Cadmium, Total		ND		mg/l		0.0005		6020	0418 18:00		
Lead, Total Silver, Total		ND ND		mg/l mg/l		0.0005 0.0005	1	6020 6020	0418 18:00 0418 18:00		
	Blank	Analysis	for	sample(s)	01	(WG23659	94-1)				
Total Metals							19	200.7			
Arsenic, Total		ND		mg/l		0.005		200.7	0417 19:30	0418 12:	48 MG
Chromium, Total		ND		mg/l		0.01		200.7	0417 19:30		
Copper, Total		ND		mg/l		0.01 0.05		200.7	0417 19:30		
Iron, Total		ND		mg/l				200.7	0417 19:30		

Laboratory Job Number: L0605351

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT	E ID
					PREP	ANAL
Dlank Dan	1	1- (-) 0:	1 (13003.65.0	.4. 1.		· · · · ·
otal Metals	lysis for s	ampie(s) 0.	1 (WG23639	19 200.7		
7 - 1 - 1 - m - 4 - 1		4-5	0.005			
Nickel, Total	ND	mg/l	0.025	19 200.7	0417 19:30 0	
elenium, Total	ND	mg/l	0.005	19 200.7	0417 19:30 0	
inc, Total	ND	mg/l	0.050	19 200.7	0417 19:30 0	418 12:48 MG
	lysis for s	ample(s) 0:	1 (WG23632	(6-4)		
otal Metals						
ercury, Total	ND	mg/l	0.0002	4 245.2	0417 17:00 0	418 10:34 DM
Blank Analy	sis for sam	ple(s) 03-0	04 (WG2365	52-1)		
esticides by GC 504				14 504.1	0419 10:41 0	419 13:19 AK
,2-Dibromoethane	ND	ug/l	0.020			
Blank Analy	sis for sam	nle(s) N3-(14 (WC2365	78-81		
olatile Organics by GC/MS		hre(p) 03-0	/4 (MG2303	5 624	0-	419 11:31 MM
Methylene chloride	ND	ug/l	5.0		•	
,1-Dichloroethane	ND	ug/l	1.5			
hloroform	ND	ug/l	1.5			
arbon tetrachloride	ND	ug/l	1.0			
,2-Dichloropropane	ND	ug/l	3.5			
ibromochloromethane	ND	ug/l	1.0			
,1,2-Trichloroethane	ND	ug/l	1.5			
-Chloroethylvinyl ether	ND	ug/l	10.			
etrachloroethene	ND	ug/l	1.5			
Chlorobenzene	ND	ug/l	3.5			
richlorofluoromethane	ND	ug/l	5.0			
,2-Dichloroethane	ND	ug/l	1.5			
,1,1-Trichloroethane	ND	ug/l	2.0			
romodichloromethane	ND	ug/l	1.0			
rans-1,3-Dichloropropene	ND	ug/l	1.5			
is-1,3-Dichloropropene	ND	ug/l	1.5			
romoform	ND	ug/l	1.0			
,1,2,2-Tetrachloroethane	ND	ug/l	1.0			
enzene	ND	ug/l	1.0			
oluene	ND	ug/l	1.0			
thylbenzene	ND	ug/l	1.0			
hloromethane	ND	ug/l	10.			
romomethane	ND	ug/l	5.0			
inyl chloride	ND	ug/l	2.0			
hloroethane	ND	ug/l	2.0			
,1-Dichloroethene	ND	ug/l	1.0			
rans-1,2-Dichloroethene	ND	ug/l	1.5			
is-1,2-Dichloroethene	ND	ug/l	1.0			
richloroethene	ND	ug/l	1.0			
,2-Dichlorobenzene	ND	ug/l	5.0			

Laboratory Job Number: L0605351

	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Blank Analysi	s for samm	ole(s) 03-04	(WG23	(6578-8)	
olatile Organics by GC/MS 62			,	5 624	0419 11:31 MM
,3-Dichlorobenzene	ND	ug/l	5.0		
,4-Dichlorobenzene	ND	ug/l	5.0		
/m-Xylene	ND	ug/l	2.0		
-xylene	ND	ug/l	1.0		
(Ylene (Total)	ND	ug/l	2.0		
tyrene	ND	ug/l	1.0		
cetone	ND	ug/l	10.		
arbon disulfide	ND	ug/l	5.0		
-Butanone	ND	ug/l	10.		
inyl acetate	ND	ug/l	20.		
-Methyl-2-pentanone	ND	ug/l	10.		
-Hexanone	ND	ug/l	10.		
crolein	ND	ug/l	8.0		
crylonitrile	ND	ug/l	10.		
urrogate(s)	Recovery		QC Cr	riteria	
entafluorobenzene	88.0	ક	80-12	:0	
luorobenzene	97.0	ક્ર	80-12	:0	
-Bromofluorobenzene	102	용	80-12	:0	
VOC's by GC/MS 8270				1 8270C	0417 15:20 0418 13:56 RL
SVOC's by GC/MS 8270				1 8270C	0417 15:20 0418 13:56 RL
cenaphthene	ND	ug/l	5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene enzidine	ND	ug/l	50.	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene Senzidine ,2,4-Trichlorobenzene	ND ND	ug/l ug/l	50. 5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene denzidine ,2,4-Trichlorobenzene dexachlorobenzene	ND ND	ug/l ug/l ug/l	50. 5.0 5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene denzidine ,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)ether	ND ND ND ND	ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene lenzidine ,2,4-Trichlorobenzene lexachlorobenzene lis(2-chloroethyl)ether -Chloronaphthalene	ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene denzidine .,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)etherChloronaphthaleneChloronaphthalene	ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 5.0 6.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene denzidine ,,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)ether dexachloronaphthalene deschloronaphthalene deschlorobenzene	ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 5.0 6.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene denzidine ,,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)etherChloronaphthalene dChloronaphthalene ,,2-Dichlorobenzene ,,3-Dichlorobenzene	ND ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 5.0 6.0 5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene enzidine ,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)ether -Chloronaphthalene -Chloronaphthalene ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene	ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 5.0 6.0 5.0 5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene enzidine ,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)ether -Chloronaphthalene -Chloronaphthalene ,2-Dichlorobenzene ,4-Dichlorobenzene ,3'-Dichlorobenzidine	ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 5.0 6.0 5.0 5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene denzidine ,,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)etherChloronaphthaleneChloronaphthalene ,,2-Dichlorobenzene ,,4-Dichlorobenzene ,,4-Dichlorobenzidine ,,4-Dinitrotoluene	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 5.0 6.0 5.0 5.0 5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene denzidine ,,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)etherChloronaphthaleneChloronaphthalene -,2-Dichlorobenzene ,,4-Dichlorobenzene ,,4-Dichlorobenzidine ,,4-Dinitrotoluene ,,6-Dinitrotoluene	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 5.0 6.0 5.0 5.0 5.0 6.0 5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene denzidine .,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)etherChloronaphthalene decaphicalene .,2-Dichlorobenzene .,3-Dichlorobenzene decaphicalene decaphica	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 8270C	0417 15:20 0418 13:56 RL
ccenaphthene denzidine 1,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)ether 1-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzidine 1,4-Dinitrotoluene 1,6-Dinitrotoluene 1,2-Dichlorobenzene 1,1-Dichlorobenzidine 1,4-Dinitrotoluene 1,1-Dinitrotoluene	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene enzidine ,2,4-Trichlorobenzene exachlorobenzene dis(2-chloroethyl)ether -Chloronaphthalene -Chloronaphthalene ,2-Dichlorobenzene ,4-Dichlorobenzene ,4-Dichlorobenzidine ,4-Dinitrotoluene ,6-Dinitrotoluene zobenzene luoranthene -Chlorophenyl phenyl ether	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene enzidine ,2,4-Trichlorobenzene exachlorobenzene dis(2-chloroethyl)ether -Chloronaphthalene -Chloronaphthalene ,2-Dichlorobenzene ,4-Dichlorobenzene ,4-Dichlorobenzidine ,4-Dinitrotoluene ,6-Dinitrotoluene zobenzene luoranthene -Chlorophenyl phenyl ether -Bromophenyl phenyl ether	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene enzidine ,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)ether -Chloronaphthalene -Chloronaphthalene ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzidine ,4-Dinitrotoluene ,6-Dinitrotoluene descene luoranthene -Chlorophenyl phenyl ether dis(2-chloroisopropyl)ether	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	1 8270C	0417 15:20 0418 13:56 RL
ccenaphthene denzidine 1,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)ether 1-Chloronaphthalene 1-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzidine 1,4-Dinitrotoluene 1,6-Dinitrotoluene 1,2-Dichlorobenzidine 1,4-Dinitrotoluene 1,5-Chlorophenyl phenyl ether 1-Bromophenyl phenyl ether 1-Bromophenyl phenyl ether 1-Bis(2-chloroisopropyl)ether 1-Bis(2-chloroethoxy)methane	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene enzidine ,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)ether -Chloronaphthalene -Chloronaphthalene ,2-Dichlorobenzene ,4-Dichlorobenzene ,4-Dichlorobenzidine ,4-Dinitrotoluene ,6-Dinitrotoluene dexachlorophenyl phenyl ether dis(2-chloroisopropyl)ether dis(2-chloroethoxy)methane dexachlorobutadiene	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	1 8270C	0417 15:20 0418 13:56 RL
ccenaphthene denzidine 1,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)ether 1-Chloronaphthalene 1-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzidine 1,4-Dinitrotoluene 1,6-Dinitrotoluene 1,2-Chlorophenyl phenyl ether 1-Bromophenyl phenyl ether 1-Bromophenyl phenyl ether 1-Bis(2-chloroisopropyl)ether 1-Bis(2-chlorobutadiene 1-Exachlorobutadiene 1-Exachlorocyclopentadiene	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 8270C	0417 15:20 0418 13:56 RL
cenaphthene denzidine .,2,4-Trichlorobenzene dexachlorobenzene dis(2-chloroethyl)etherChloronaphthalene c-Chloronaphthalene .,2-Dichlorobenzene .,4-Dichlorobenzene des,4-Dichlorobenzidine des,4-Dinitrotoluene des,6-Dinitrotoluene	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50. 5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	1 8270C	0417 15:20 0418 13:56 RL

Chain-of-Custody Recor						A lib a Wg	4							LO	653 €	
Project Number: 982482-2								Project Location: Everett MA Project Manager: Andrew Adinotfi							Page 1 of 1	
1021 Main Street Winchester, MA 01890 PH: 781.721.4000	Send Repo		Paul Silve	-	om		Na2S	03 HN03	None	None	HCI		HsSO4 N	2003	Sample Field	
FX: 781.721.4073			YES		NA			1) vote 1)	Hex Cr, pH	-low	y is		A Property of the Park		YES (NO) NA Sampled Shipped	
If Yes, Are Drinking Water Samples Subm If Yes, Have You Met Minimum Field QC	niited?	nts?	YES YES	NO NO	NA NA		EPA 624, EPA 504	Fotal Metals (see note 1)	RCW/R-5 TSS, TRC, He	8270 with PAH-low	TPH-1664	NO	Tot Phenol	PCB	With Ice (YES) NO	
982482-GZ103104-COMF 982482-GZ103 982482-GZ104		4/14/2006 4/14/2006 4/14/2006	1330 1415 1245	Aq	11 4 4	KW KW	4-voa	1-250		_		1-250	•	2-1L	See Note 2 See Note 2	
								Action 10 to			A		Before	e sub	mitting rush samples, you must	
Min well	4/14/2	1630	Received by 1. 66 Paryland by		ήρle	brigg.	10	ormel _ D-Day _ -Day _	TOTAL STATE OF STATE	Oth 7-De 3-De	er	_	notify that th	t ne la ne TA	boratory to confirm T can be achieved.	
Pulling datherd by: (daystane)	4/14/06	1300 Time 20.75	Frechard by: 3. Da	225 (signature)	rain	Li	Note 1.	Total N	etala-6	b, As, C	4, Cr, C	r, Pb, Hç	M, Se, 82482-G	Ag, Zn		
Reinquished by: (againme)	Oale:	Time:	Recolfed by:	(dignature)				98248	2-GZ 103	104-COI						

